
1

Auction-Based Optimal Task-Offloading in Mobile
Cloud Computing

Sudip Misra+, Bernd E. Wolfinger∗, Achuthananda M. P.†, Tuhin Chakraborty‡, Sankar N. Das†, Snigdha Das†
+Department of Computer Science and Engineering, IIT Kharagpur,

†School of Information Technology, IIT Kharagpur, ∗Department of Computer Science, University of Hamburg
Email: {+smisra, †achuthadivine, †sankar.narayan.das, †snigdhadas}@sit.iitkgp.ernet.in, ‡tuhin.babai@gmail.com,

∗wolfinger@informatik.uni-hamburg.de

Abstract—One interesting approach for executing resource inten-
sive applications in a Mobile Cloud Computing environment is
offloading computation and data to a cloud. However, offloading
to a distant cloud is not always an optimal solution due to
longer latency and energy consumption associated with offloading
and intermittent wireless communication. Cooperation of nearby
mobile devices or cloudlets can be considered as an alternative
of distant cloud to execute a resource intensive task. In this
paper, we address the problem of offloading tasks in a mobile
cloud environment by proposing a three-tier architecture. The
proposed architecture, named as SOBDO, tries to offload the
tasks to nearby mobile devices or cloudlets before offloading to a
distant cloud. Nearby mobile devices and cloudlets are considered
as the components of first two tiers, whereas a distant cloud builds
up the third tier. We apply the concepts from Auction theory to
optimally assign a task to one of the devices, cloudlets, or cloud,
based on different requirements, such as latency and energy
consumption. The performance of the proposed architecture is
evaluated by simulation and testbed experimentation, and the
results show that our approach yields satisfactory outcomes.

Index Terms—Mobile Cloud Computing, Task Offloading,
Cloudlets, Auction theory

I. INTRODUCTION

The number of smart phone users, and also the number of
applications which can run on these smart devices are shooting
up everyday. The smart phones can support a variety of
applications, ranging from simple standalone games to multi-
player games and simple calculator app to voice and face
recognition apps. The simple applications do not demand
much resources of the mobile devices, nor do the associated
tasks require any connectivity. On the contrary, there exist
complex applications, such as voice and face recognition apps,
content based image retrieval [1] and finding audio songs
from audio samples, which require extensive search of huge
databases for the match, and also consume too much time,
energy, bandwidth and memory. One solution for such resource
draining tasks is to execute them with the help of powerful
but remote servers. However, such an approach incurs a huge
cost due to bulk data transfer and latency. Excessive latency
may hurt the users’ quality of experience of the tasks. With
the emergence of Cloud Computing [2], [3], [4], [5], Mobile
Cloud Computing (MCC) [6], [7] [8], [9], Drop computing
[10], Cloudlets [11] [12], and Edge computing [13], [14],
the execution of such resource intensive tasks on mobile
devices has shown promising possibilities. Cloud computing
[15] provides computing resources (hardware and software) to
the users on demand, and those resources are delivered as a

service over a network, usually the Internet. On the other hand,
Mobile Computing or Nomadic Computing [16] uses mobile
devices, notebooks, and tablets to compute and communicate
over the Internet. In MCC, a cluster of collaborating but het-
erogeneous mobile devices provides the cloud infrastructure.
Other noticeable aspects of MCC are pervasiveness, mobility,
intermittent communication, and limited battery life of the
devices [17], [18]. Similar to MCC, the Drop computing
paradigm provides a two-tier crowd-based edge cloud which
combines the cloud and wireless technologies over multi-
layered networks to provide external resources to a mobile
device [10]. In [11], neighboring mobile devices act as either
service requester or service provider to build cloudlets on “ad-
hoc” basis with the help of WiFi. Though edge computing
advocates for processing of data at the edge of the network
or in the close proximity of the sensors or mobile devices,
constructing a MCC infrastructure to shift the computation at
the edge is a challenging task.

In this work, we propose a 3-tier mobile cloud computing
architecture, SOBDO, which comprises of nearby mobile
devices, cloudlets, and a distant cloud to build the total 3-
tier architecture. We consider that the nearby mobile devices
build a mobile cloud infrastructure to avoid bottlenecks in
the communication between a mobile device and a distant
cloud. A source mobile node communicates to nearby mobile
devices for efficient utilization of the available computational
resources and bandwidth in its vicinity. Moreover, the source
node applies the concepts of Auction theory [19] for offloading
tasks to suitable destinations. Here, the sources and the desti-
nations are assumed as sellers and bidders, respectively. The
use of Auction theory helps a source or a seller to offload a
task in presence of incomplete information. Further, the bidder
mobile devices have very limited information about other
bidders. Those bidder devices do not require to know the total
number of bidders, their bidding, and the types of the bidders.
We apply the concepts from Auction theory so that the bidders
can decide or bid with their local information only or in
presence of incomplete information about their surroundings.
In contrast to conventional data analytics frameworks, such
as Hadoop [20] and Sparrow [21], which rely on centralized
schedulers to enforce a global policy for task offloading,
SOBDO enables each mobile device to enforce its own local
policy to offload tasks without any central intervention. Next,
we have summarized the contributions of the work.

• The proposed three tier mobile cloud computing archi-
tecture SOBDO helps a mobile device to offload its tasks

ruelia
Typewriter
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. [10.1109/JSYST.2019.2898903]

2

to a suitable destination in an optimal manner.
• The proposed offload mechanism is a distributed one.

The mobile devices can offload their tasks without any
central control or central intervention.

• The use of the concepts of Auction theory helps the
mobile devices to offload their tasks in presence of
incomplete information. Further, the overhead, due to
communication between a source and probable destina-
tions before the actual offloading, is minimized due to
the use of Auction theory.

• We have evaluated the performance of SOBDO by a
test-bed experimentation. The test-bed evaluation shows
the effect of (i) size of a task, (ii) available band-
width of WiFi Direct, WiFi, and 3G networks, and (iii)
computational power of a device on the offloading of
various tasks. Further, the test-bed evaluation shows when
offloading is helpful for a mobile device.

II. RELATED WORK

In MCC, application offloading [22], which is a software-
level solution for increasing the capabilities of a smart phone,
outsources the various tasks of a resource-intensive application
to the cloud infrastructure. There are various strategies [23]
for offloading tasks onto remote devices, and some important
strategies are briefly described below.

Virtual Machine Migration: At first, an appropriate remote
host server [24] is identified. Then, the Mobile Device creates
a Virtual Machine (VM) instance, configures the VM and
encapsulates the state information of a resource-intensive
running application in that VM instance. The VM instance
is then migrated to the remote server. After receiving a VM
instance, the remote server creates a new VM instance and
the migrated VM from the mobile device is cloned onto the
new VM. Then the state of the application is resumed and
execution is done on the remote server. Finally, results are
returned to the mobile device.

Entire Application Migration: This approach offloads entire
resource intensive tasks onto the remote servers. There are
two ways to achieve the same [23]. Execution of applications
is initiated by the mobile device and when the bottleneck,
for resources, occurs, the running instance is offloaded to the
servers. Another way is to have client and server separation
of the application. The client part is executed in the mobile
device and the server part handles the critical processing and is
performed by the remote server acting as a host. This method
takes the advantage of larger CPU performance availability
and increased memory resources which leads to quicker and
more efficient completion of the task. However, this method
may need lots of interactions with smart phones and consume a
large portion of the bandwidth and energy. Hence, connectivity
is one of the prime concerns here.

Application Partitioning: Based on the granularity levels of
resource consumption, applications may be partitioned into
smaller tasks. Depending on whether partitioning is done at
run-time or at compile-time, Application Partitioning can be
classified into the followings.

• Static Partitioning: All the tasks are partitioned during
compile time [25], based on whether a task is resource

intensive or not. This approach involves manual anno-
tation by the application developer indicating the tasks
which need to be offloaded and which do not.

• Dynamic Partitioning: Task partitioning happens at run-
time [26] in contrast to Static Partitioning, in which
partitioning happens at compile-time of the application.
Evaluation is performed to estimate the resource con-
sumption for executing the task in the mobile device.

III. MOTIVATION AND OBJECTIVES

Motivation: For a mobile device, offloading to a remote server
or cloud is not always the best approach. Due to limited battery
power and/or available limited bandwidth, it often takes a lot of
time to offload and execute a task in the distant cloud or remote
server. Network connectivity also plays a major role at the
time of offloading. Improved connectivity leads to faster and
accurate results while inadequate connectivity leads to possibly
inaccurate and delayed results. So, the offloading decisions,
whether and where to offload, are challenging ones for the
mobile devices.

Objectives: The objectives of this work are as follows:

1) Designing a suitable architecture for task-offloading
in an environment which consists of mobile devices,
cloudlets and/or distant cloud(s).

2) Developing a method for task-offloading from a mobile
device to suitable destinations in a hierarchical manner.

3) Analysis of the effects of different factors, e.g., available
bandwidth and device locations, on the task-offloading.

IV. PROBLEM SPECIFICATION

A. Architecture

Offloading the tasks to appropriate destinations in an optimal
manner is a challenging task for the mobile users. The decision
is made on the basis of (i) available bandwidth, (ii) response
time, and (iii) energy to complete the task. Here, we propose
a three-tier architecture for Selection of Best Destination
to Offload or SOBDO in short, represented by Fig. 1, for
offloading tasks from a mobile device to a suitable destination.

SOBDO-1: In the first tier, named as SOBDO-1, a source
mobile device, which wants to offload some tasks, commu-
nicates with other mobile devices within its range, and the
communication is performed by using either Bluetooth, WiFi-
direct or WiFi technology. The source mobile device receives
a list of nearby mobile devices along with a cost of offloading.
The cost of offloading is a function of various metrics, such
as clock speed of a device, clock cycles willing to spare,
remaining energy of the device, and available bandwidth.
Then, the source mobile calculates the total time to complete
the offloaded task and, also, the energy consumption for
offloading that task to each of the available mobile devices.
Based on the calculated costs, the source mobile node offloads
a task to nearby devices or searches for suitable destination(s)
in the next level.

SOBDO-2: In this tier, a source mobile node communicates
with nearby cloudlets, and the communication is performed

3

Fig. 1: SOBDO Architecture

through WiFi-direct or WiFi. The source mobile searches
nearby cloudlets along with their configuration and co-
operation details, such as clock speed of the cloudlet, clock
cycles willing to spare, connections willing to accept. Then
the source mobile calculates the overall cost for offloading
the task to each of the nearby cloudlets, and offloads a task
to a cloudlet if the offloading maximizes the objectives of the
source.

SOBDO-3: In this tier, the communication is accomplished
through WiFi or Cellular networks. If offloading a task in the
first two tiers is not sufficiently effective, a source offloads its
tasks to a distant cloud.

B. Problem Statement

We have considered that M mobile nodes are available within
the range of the Source Mobile Node S. The range, here,
means the range of Bluetooth, WiFi, or WiFi-Direct. Addi-
tionally, C cloudlets, are available within the WiFi range of
S and, the main task is divided into T independent sub-
tasks. S can assign maximum Y

(M)
i tasks to each of the

mobile node Mi, where i = 1, 2, 3, ...,M . On the other hand,
maximum Y

(C)
j tasks can be assigned to a cloudlet Cj , where

j = 1, 2, ..., C. Though a task Tl, where l = 1, 2, ..., T , can
be offloaded to X(M) mobile devices or X(C) cloudlets, we
assume that a task Tl is offloaded to a single device, i.e.,∑M

i=1 Zil +
∑C

j=1 Zjl = 1, where Zdl is an indicator variable,
and Zdl = 1 if task Tl is offloaded to destination d or zero
otherwise. A task Tl is offloaded to a destination device on
the basis of various parameters, such as available bandwidth,
time, battery status of a node. We estimate the utility of
offloading a task Tl to a destination based on the above
mentioned parameters. The utility is inversely proportional
with the time to complete an offloaded task and the total
energy consumed for offloading. In other words, destination
devices, which complete an offloaded task in a small time,
and have small communication cost, have a higher utility than
the other destinations. The utility of offloading or assigning a
task Tk to a mobile destination Mi is represented by U

(M)
ik .

Similarly, U (C)
jk denotes the utility of offloading a task Tk to

optimal cloudlet Cj . The objective of a source mobile device

is to maximize the total utility at any time instant.

R1 = maximize

M∑
i=1

T∑
k=1

U
(M)
ik

Zik (1)

R2 = maximize

C∑
j=1

T∑
k=1

U
(C)
jk

Zjk, (2)

where R1 and R2 represent the total utility at tier-1 and tier-2
of SOBDO. Let R0 denote the total utility for execution of a
particular task in the source mobile node S. The destination
of an offloaded task is selected as follows:

Destination =

Source mobile node, if R1 ≤ R0 and R2 ≤ R0

Nearby optimal mobile node,
if R0 < R1 and R2 ≤ R1

Nearby optimal clouldet, if R0 < R2 and R1 < R2

Distant Cloud, if task offloading is indispensable,
but offloading it to tier-1 and tier-2 is inefficient

(3)

V. METHODOLOGY

A task with heavy computational overhead can be offloaded
to nearby mobile devices or cloudlets [27] in proximity before
offloading that task to a distant server or cloud. This offloading
to a near device could save significant amount of bandwidth,
energy and time. SOBDO is based on Static Application Parti-
tioning. At first, a task is profiled, and based on the calculated
profiling energy consumption and time requirement for each of
the partitioned tasks are approximated. The decision to offload
tasks or destination node for each offloaded task is taken using
the principles of Auction theory [28]. The remote cloud is
used to offload only if executing a task in nearby devices or
cloudlets is not yielding an optimal solution or nearby devices
or cloudlets are not available.

It can be noticed that the offloading of a task to a suitable
destination is an asymmetric assignment problem. Here, our
proposed approach, which is based on the principle of Auction
theory, maps the tasks to cloudlets or mobile nodes. Before
selecting the best destination to offload the tasks, a source
node S performs profiling of the tasks based on the various
granularity levels to estimate the cost and time likely to incur
for executing a task in the source node S. Parameters, such
as time taken to offload a task, are also calculated [29]. Then
utility of each task is calculated for mapping or offloading
each task to a device or cloudlet.

Let us assume that at a particular time instant t, a source node
S wants to offload a total of K tasks, and the vector Q =
{Q1, Q2, ..., QK} represents the number of instructions to be
performed to execute those K tasks, where task Tk contains
Qk instructions. Further, s0 is considered as the processing
speed of Source Mobile node in unit instructions/second.
The processor speed of the mobile devices and cloudlets
are represented by the vectors VM = {s1, s2, ..., sM} and
VC = {s′1, s′2, ..., s′C}, respectively. Hence, the minimum time
required by a device to execute a task Tk, which contains Qk

instructions, can be expressed as follows

∆
(j)
k
∝ Qk/(sj ∗ (100− lj)), (4)

where ∆
(j)
k represents the time required for execution of task

Tk, and sj and lj are the processor speed and computational

4

load of a mobile device Mj or cloudlet Cj , respectively. Qk

can be approximated from the computational complexity of the
task. At the time of the offloading of a task, the data and/or
code associated with the task have to be offloaded. Time to
offload a task is approximated as D/B, where D is the total
size of the task, and B is the available bandwidth. So, the
total time to execute a task is estimated as the total time for
executing a task and offloading a task.

In SOBDO, the source S acts as a seller, and auctions each
task Tk for offloading to a suitable destination. A mobile node
Mj or cloudlet Cj participates in that auction as a bidder. The
mapping of a node-task or cloudlet-task pair is determined
based on the maximum bidding increment. The maximum
bidding increment is defined as the difference between the
maximum utility and the second largest utility. The utility
is measured based on different parameters, such as time to
complete the task and remaining energy.

Let P be the set of pairs (Mi, Tk), where a task Tk ∈ T is
mapped onto a mobile node Mi ∈ M . For each node Mi,
there exists a set of tasks A(Mi) that can be mapped onto the
mobile node Mi, and is expressed as

A(Mi) = {Tk|(Mi, Tk) ∈ P}. (5)

L is the set of pairs (Cj , Tk), where the cloudlet Cj is assigned
a task Tk . For clouldet Cj , there exists a set of tasks B(Cj)
that can be mapped to Cj , and is expressed as follows

B(Cj) = {Tk|(Cj , Tk) ∈ L} (6)

A task Tk can be mapped to multiple destinations. For each
task Tk , there exists a set of mobile nodes C(Tk) onto which
the task Tk can be mapped, and is denoted by

C(Tk) = {Mi|(Mi, Tk) ∈ P} (7)

For each task Tk , there exists a set of cloudlets D(Tk) onto
which task Tk can be mapped, and is denoted by

D(Tk) = {Cj |(Cj , Tk) ∈ L} (8)

Let assume a source mobile S have T tasks for offloading.
Algorithm 1 depicts the process how S computes TM , TCl,
and TC , which denote the sets of the tasks of to be of-
floaded to SOBDO-1, SOBDO-2, and SOBDO-3, respectively.
It can be observed that SOBDO-1 is comprised of nearby
mobile devices, SOBDO-2 is comprised of nearby cloudlets,
and SOBDO-3 is comprised of distance cloud infrastruc-
ture.

Algorithm 1 Task Offloading
Inputs:

T : The set of tasks to be offloaded
Output:

TM : The set of tasks, offloaded to SOBDO-1; TCl: The set of tasks,
offloaded to SOBDO-2; TC : The set of tasks, offloaded to SOBDO-3

1: Profile task Tk ∀Tk ∈ T
2: Auction task Tk ∀Tk ∈ T
3: Compute P , the set of pairs (Mi, Tk), where a task Tk ∈ T is mapped

onto a mobile node Mi ∈M , from the received biddings from the near
by mobile devices

4: Estimate TM from P . SOBDO-1
5: Auction task Tk ∀Tk ∈ T − TM

6: Compute L, the set of pairs (Cj , Tk), where the cloudlet Cj is assigned
a task Tk , from the received biddings from the near by cloudlets

7: Estimate TCl from L . SOBDO-2
8: Estimate TC from T − TM ∪ TCl . SOBDO-3
9: Offload tasks of TM , TCl and TC to suitable destinations

A. SOBDO-1 Solution

IT and IM represents the non-empty subset of tasks to be
offloaded by source device S and nearby mobile nodes in the
range of the source, respectively. Here, we assume that both
of the IT and IM are finite.

1) Bidding Phase: During bidding phase, a bidder Mi, i.e.
a nearby mobile device of source, bids for any of IT tasks.
At first, Mi approximates the required time to complete a
task Tk ∈ IT from Qk, si, and li, where Qk is the total
number of instructions or size of Tk, and si, li are computation
power and load of Mi, respectively. Mi returns a vector P i

T =
{P1, P2, ..., P|IT |} to source S as its bids where Pk is the
approximated time to complete a task Tk.

Each mobile node Mi ∈ IM finds a task Tk ∈ IT and each
Task Tk is offloaded to a mobile node Mi which provides
maximum utility to execute the task.

Mik ∈ max Uik,∀Tk ∈ IT (9)
Tki ∈ max Uik, ∀Mi ∈ IM , (10)

where Mik is the maximum utility provided by a particular
device Mi. On the other hand, each task Tki is the maximum
utility provided by any of the devices of IM . The bidding
increment is estimated as follows

hi = ei − fi, ∀Mi ∈ IM (11)
hk = ek − fk, ∀Tk ∈ IT (12)

where ei, ek are the maximum utilities for the node and task,
respectively.

ei = max Tk∈A(Mi)
Uik (13)

ek = max Mi∈C(Tk)
Uik (14)

and fi, fk are the second largest utilities for the node and
task, respectively.

fi = max Tk∈A(Mi),Tk 6=Tki
Uik (15)

fk = max Mi∈C(Tk),Mi 6=Mik
Uik (16)

2) Allocation Phase: The source S assigns a task Tk to a
node Mi, for which the benefit is maximum, and the highest
bid is estimated as follows

Gik = max Mi∈IM ,Tk∈IT (hi, hk). (17)

Source S excludes Tk from IT and Mi from IM after
assigning a task Tk to device Mi. Next, the utilities obtained
for executing each task in both source and assigned node are
compared. The task Tk is offloaded if a higher utility is ob-
tained by executing a task in Mi, otherwise the source executes
the task or else offloads to nearest cloudlets. Algorithm 2
illustrates the detail of the Auctioning process for the SOBDO-
1 or for the mobile devices. Next, we have illustrated the
whole Auction procedure with an example.

Example: Let assume that a source mobile S has three tasks
T1, T2, and T3 for offloading. Three mobile devices, Ma, Mb,
and Mc put their biddings for those tasks, and Table I.

At first, we have computed hi = ei−fi,∀Mi ∈ IM and hk =
ek − fk,∀Tk ∈ IT , and Table II summarizes the computation.
Let consider Mobile node Mc, and hc = 14−8 = 6. Similarly
for Task T2, h2 = 14− 11 = 3. After Phase 1, S maps Task
T2 to node M3 by Eq. (17) as follows.

Gik = max Mi∈IM ,Tk∈IT ((ha, hb, hc), (h1, h2, h3)) (18)
Gik = max Mi∈IM ,Tk∈IT ((1, 1, 6), (2, 3, 1)) (19)
Gc2 = (hc = 6, h2 = 3) (20)

5

Algorithm 2 Task Auctioning
Inputs:

IT : The set of tasks to be offloaded
Output:

P : the set of pairs (Mi, Tk), where a task Tk ∈ IT is mapped onto a
mobile node Mi ∈ IM

1: Profile task Tk ∀Tk ∈ T
2: Auction task Tk ∀Tk ∈ T
3: Receive biddings from the near by mobile devices
4: while |IT | 6= 0 ∨ |IM | 6= 0 do
5: for ∀Mi ∈ IM do
6: compute ei := max Tk∈A(Mi)

Uik

7: compute fi : max Tk∈A(Mi),Tk 6=Tki
Uik

8: compute hi := ei − fi
9: end for

10: for ∀Tk ∈ IT do
11: compute ek := max Mi∈C(Tk)

Uik

12: compute fk := max Mi∈C(Tk),Mi 6=Mik
Uik

13: compute hk := ek − fk
14: end for
15: Estimate the mobile node and task (M

(max)
i , T

(max)
k

) pair based
on highest bidding increment value of h(max)

i and h
(max)
k

. Mapping
of Mobile node and Task pair

16: Remove T
(max)
k

from IT . Updating of IT
17: Remove M

(max)
i from IM if all the biddings of M

(max)
i are

satisfied . Updating of IM
18: end while

T1 T2 T3

Ma 10 11 8
Mb 7 8 9
Mc 8 14 6

TABLE I: Biddings
for the tasks by the
mobile devices

T1

(h1)
T2

(h2)
T3

(h3)
Ma (ha) (1, 2) (1, 3) (1, 1)
Mb (hb) (1, 2) (1, 3) (1, 1)
Mc (hc) (6, 2) (6, 3) (6,1)

TABLE II: Maximum bidding in-
crement in Phase 1

Next after Phase 1, Si recomputes the mapping process with
Mobile nodes Ma and Mb and tasks T1 and T3. At the end, S
maps task T1 to mobile node Ma, and task T3 to mobile node
Mb, respectively. So the overall task to mobile node mappings
are as follows: (Ma, T1), (Mb, T3), and (Mc, T2).

B. SOBDO-2 Solution

Similar to the offloading of SOBDO-1 tier, we consider IC as
a non-empty subset of cloudlets in the range of source mobile
S, whereas IT denotes a non-empty subset of remaining tasks,
which can be offloaded to the IC .

1) Bidding Phase: Each cloudlet Cj ∈ IC bids for the
tasks of IT , and returns a vector of its bidding P j

T =
{P1, P2, ..., P|IT |}. A task Tk is offloaded to a cloudlet Cj ,
which offers maximum utility to execute the task.

Cjk ∈ max Ujk, ∀Tk ∈ IT (21)
Tkj ∈ max Ujk,∀Cj ∈ IC , (22)

where Cjk is the maximum utility provided by a particular
cloudlet Cj . On the other hand, Tkj is the maximum utility
provided by any cloudlet of IC . The bidding increment is
estimated as follows

h′
j = e′j − f ′

j , ∀Cj ∈ IC (23)

h′
k = e′k − f ′

k, ∀Tk ∈ IT (24)

where e′j , and e′k are the maximum utilities for the cloudlet
and task, respectively, and are calculated as follows

e′j = max Tk∈B(Cj)
Ujk (25)

e′k = max Tj∈D(Tk)
Ujk (26)

and f ′j , f ′k are the second largest utilities for the cloudlet and
task, respectively. The second maximum utilities are estimated
as follows

f ′
j = max Tk∈B(Cj),Tk 6=Tkj

Ujk (27)

f ′
k = max Cj∈D(Tk),Cj 6=Cjk

Ujk (28)

2) Allocation Phase: A cloudlet Cj with the highest bid for
task Tk is selected from the non-empty subset IC for maximiz-
ing the benefit. The highest bid is estimated as follows

G′
jk = max Cj∈ICandTk∈IT (g′j , g

′
k) (29)

We assign a zero utility value to the task TK ∈ IT , which
implies that there will be no more selection of the task, and
also the task and the destination cloudlet are removed from
the set IT and IC , respectively. If IT does not become empty
after offloading the tasks to the cloudlets, the remaining tasks
are offloaded to the distant cloud to be executed there.

VI. RESULT AND DISCUSSION

We have performed the evaluation of the proposed approach
SOBDO in two phases. In the first phase, the performance
of SOBDO is evaluated based on simulation. However in the
second phase, we have used a testbed-based experimentation
to evaluate the performance of SOBDO. Results in Section VI
are given including 95% confidence intervals. The simulated
experiments are designed, performed and evaluated by using
MATLAB programming environment in a machine with Intel
i5-2400s 2.50 GHz Processor and 6 GB RAM. On the other
hand, The detail of the test-bed experimentation is illustrated in
Section VI-B. Further, Table IV summarizes the experimental
set-up of test-bed experiments.

A. Simulation Experiments

1) Experimental Set-up: For the simulation experiments, we
have considered a resource-intensive application with N > 0
tasks. Further, it is assumed that M > 0 mobile devices
and C > 0 cloudlets are present in the proximity of the
source device. The values of N , M , and C are generated
randomly (uniformly distributed) within the range of 1− 100
at the time of simulations. Moreover, the size of each of
the N tasks and device-specifications of the mobile devices
and cloudlets are also specified randomly. As an example, the
sizes of the tasks are considered uniformly distributed within
the range of 1 − 300 KB. In this work, the cloudlets are
assumed to be more resourceful than the mobile devices in
terms of processing speed, memory, and other factors. The
mobile devices or cloudlets approximate the execution time
of a task by applying Eq. 4. Further, the offload time of a
task is directly proportional with the ratio of the task size and
available bandwidth. The input of the Auction-theory based
approach is the utility matrix, and the output is task-node
mappings.

6

2) Benchmark Metrics: We have considered the following
metrics as benchmark metrics: (i) Size of a task, (ii) Available
bandwidth, and (iii) Computational power, which is measured
by the processor speed of the device to which a given task
can be offloaded.

3) Effects of the Size of the Offloaded Tasks: At first, we
have evaluated the effects of the task-size on offloading. The
computational complexity of a task depends on the number
of input elements. On the other hand, the total data size to
be offloaded is directly proportional with the number of input
elements of that task. As an example, the data or file size of
an array of 5000 integers is around 24 KB. It can be observed
from Fig. 2 that the offloading helps to reduce the time to
complete a task, as the size or the number of inputs of the
tasks increases. SOBDO, clearly, reduces the completion time
by offloading the tasks to a suitable destination other than the
source mobile.

50 100 150 200 250 300
0

20

40

60

80

100

 Size of Application (KB)

T
im

e
(m

ili
se

co
nd

)

SOBDO
Without Offloading

Fig. 2: Effect of Application-size on the time taken in Without
Offloading (Executing in Source) and SOBDO

Figure 3 illustrates an example scenario, where five tasks
with different sizes are considered. It can be noted that the
performance of SOBDO is significantly better than the other
scheme, where the tasks are not offloaded.

1 2 3 4 5
0

50

100

150

200

250

300

 Task Id

T
im

e
(m

ili
se

co
nd

)

SOBDO
Without Offloading

Fig. 3: Comparision between Without Task Offloading (Exe-
cuting in Source) and SOBDO

4) Effects of Available Bandwidth: During this experiment,
we have considered an application, consisting of 100 resource-
intensive tasks, which are required to be offloaded. Bandwidth
of the cloudlet is varied and the distribution of the offloaded
tasks is illustrated by Fig. 4. Initially, the available band-
width of the cloudlet is small and more tasks are offloaded
in SOBDO-1 tier, i.e., the nearby mobile devices. As the
bandwidth or available data rate of the cloudlets keeps to be
increasing, a larger number of tasks are offloaded in SOBDO-2
tier, or offloaded to the cloudlets.

5) Effects of Computational Power: In this case, we have also
considered an application with 100 resource intensive tasks.

300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Bandwidth (Kbps)

T
as

ks

SOBDO−1
SOBDO−2

Fig. 4: Effect of available Bandwidth of Cloudlet on distribu-
tion of tasks across tiers

Computational-power of the cloudlets is varied and the task-
distribution can be observed by Fig. 5. It can be observed that
more tasks are offloaded to cloudlets or SOBDO-2 than to the
mobile devices, as the computational power of the cloudlets
increases. It can be observed from Fig. 4 and 5 that SOBDO
offloads the tasks to more resourceful destinations with respect
to computational power and bandwidth.

0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100

Speed (GHz)

T
a

s
k
s

SOBDO−1

SOBDO−2

Fig. 5: Effect of Computational Power of Cloudlet on distri-
bution of tasks across tiers

B. Testbed-based Experimentation

1) Experimental Set-up: We have considered a three-tier
architecture for offloading the tasks. The first-tier of the testbed
set-up consists of three mobile devices, one Lenovo and two
Samsung mobile devices. On the other hand, two laptops
build the second tier. For distant cloud infrastructure, we
have used the “Meghamala” cloud infrastructure, which is an
internal cloud infrastructure by IIT Kharagpur. The detailed
specifications of the devices are illustrated next by Table IV
of Appendix 1. We have used one Lenovo mobile as a source
device, and compare its performance with others.

We have, for testbed experimentation, evaluated an application
which reads integers stored in a text file, sorts the integers,
and rewrites the sorted integers into another text file. The
application reads, sorts, and stores arrays with 5000, 10000,
20000, 50000, and 100000 elements, respectively. The applica-
tion uses Merge sort for the sorting. Merge sort is considered,
as it is easy to partition the array used in a Merge sort and
the Merge sort algorithm can be performed in parallel manner.
Moreover, the application can be implemented for any mobile
device without any significant overhead.

2) Effect of Task-size: At first, we have run the application on
mobile, cloudlet, and cloud infrastructure for estimating the
time of completion of the mentioned application on various
types of infrastructures. Figure 6 illustrates the relationship

7

between task-size and execution time on various devices.
As expected, the execution time on an individual platform
increases with the task-size. One interesting fact can be noticed
from Fig. 6 that the average time to execute a task in the
cloudlet tier is larger than for the mobile device tier.

5000 10000 20000 50000 100000
0

20

40

60

80

100

120

T
im

e
 (

m
ili

s
e

c
o

n
d

)

Task Size (array elements)

Mobile

Cloudlet

Cloud

Fig. 6: Execution time of an application with different task-
sizes by various infrastructures

Though the computation power of that cloudlet is higher, it
takes more time to complete a task due to higher CPU load at
that time instant. So, it can be concluded that the CPU load,
along with computation power, is another important factor at
the time of offloading a task.

3) Effect of Available Bandwidth for Offloading a Task:
Figure 7 depicts the relationship between the offload-time
and size of offloaded data while using various communication
modes. The data are mainly offloaded by using WiFi direct,
WiFi, and 3G communication mode. We have also observed
that the performance of Bluetooth technology is too bad with
respect to the other modes of communications, and excluded
that data for clarity of Fig. 7. In general, the performance
of WiFi direct is better than WiFi or 3G communication.
However, it can be noticed that the performances of WiFi
direct, WiFi, and 3G do not vary significantly when the size of
offloaded data is small. In other words, when data size is small,
computation load of a task predominates the communication
load of that task, and any of the above mentioned modes of
communication can be used for offloading a task with small
data size.

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

350

Size of Offloaded Data (KB)

T
im

e
fo

r
O

ff
lo

ad
in

g
 (

m
ili

se
co

n
d

)

WiFi Direct
WiFi
3G

Fig. 7: Offload time for data with various size

4) Effect of Task Type to Energy Consumption: A source
mobile node offloads tasks, mainly, to save its energy. Figure 8
illustrates the comparison with respect to energy consumption
between the following two tasks: (i) Sorting, performed by
source mobile and (ii) Offloading, by the source to cloud. We
consider WiFi direct mode of offloading, as it can be noted
from Fig. 7 that WiFi direct performs best, in terms of time,
for offloading a task. From Fig. 8, it can be observed that the
load of sorting or computation exceeds the load of offloading
or communication when the task size is 50000 elements or

higher. So, a source mobile can save its energy by offloading
when the computational load of a task is too high.

5000 10000 20000 50000 100000
0

1

2

3

4

5

6

7

8

 Task Size (array elements)

 E
n
e
rg

y
 (

J
o
u
le

)

Sorting by Source Mobile

Offloading by WiFi Direct

Fig. 8: Energy consumption of different tasks according to size

5) Task Offloading: Here, we evaluate how SOBDO offloads
tasks to suitable destinations considering the computational
and offload overheads of the same. We have considered a total
of six tasks with different communication and computational
overhead for offloading the tasks to suitable destinations
by using our proposed Auction-theory based approach. The
details of the tasks are depicted by Table III. In SOBDO,
a source mobile node, S, communicates with nearby mobile
devices by using WiFi direct, whereas the S communicates
with the cloudlets or distant cloud by using WiFi mode of
communication. It can be remembered that the first tier of
SOBDO or SOBDO-1 consists of the nearby mobile devices,
and the cloudlets and cloud builds SOBDO-2 and SOBDO-
3 tiers, respectively. We have observed that S performs a
task instead of offloading the same when the communication
load of the task is higher than its computational load. As an
example, we may consider the sorting task or Task 1. It can
be observed from Fig. 9, Task 1 is always performed by the
source device. Task 2, 3, and 4 are offloaded to the nearby
mobile devices and also to the cloudlets, i.e., the tasks are
offloaded to both of SOBDO-1 and SOBDO-2 of SOBDO.
The source S offloads the tasks to a suitable destination based
on the execution time for completion of that task by the
destination. The total execution time of a task depends on the
computational power and load of a destination device. Here,
the computational load of a destination device is the key factor
when Task 2, 3, and 4 are offloaded. On the other hand, Task
5 and Task 6 are only offloaded to nearby mobile devices and
to the distant cloud, respectively. Though, Task 5 and 6 are
similar in nature, their offload-destinations are different due to
their different computational overheads. As the Task 6 has a
huge computational overhead, it is always offloaded to cloud
or SOBDO-3 tier. So, in conclusion, our proposed approach
SOBDO offloads different tasks to the suitable destinations
considering the computational and communication overhead
of the tasks and the available resources.

VII. CONCLUSION

In this paper, we have proposed SOBDO, which optimally
chooses a destination to offload a resource intensive task
among the various destinations in a MCC environment.
SOBDO uses static partitioning of a resource intensive ap-
plication into smaller tasks, and applies the concepts from
Auction theory to select the best destination to offload a

8

TABLE III: Description and attributes of different offloaded tasks

Task
Id. Description Attributes Complexity Size Computational

Overhead
1 Merge Sort of n elements n = 10000 O(nlogn) 50 KB ≈ 40000
2 Matrix Multiplication of two n× n matrices n = 50 O(n3) 25 KB ≈ 125000
3 Matrix Inversion of a n× n matrix n = 50 O(n3) 12 KB ≈ 125000
4 Matrix Inversion of a n× n matrix n = 100 O(n3) 50 KB ≈ 106

5 Knapsack Problem with n elements and W size of Knapsack n = 100 and W = 1000 O(nW) 1 KB ≈ 105

6 Knapsack Problem with n elements and W size of Knapsack n = 1000 and W = 10000 O(nW) 5 KB ≈ 107

1 2 3 4 5 6
0

20

40

60

80

100

120

 Task Id

 P
e
rc

e
n
ta

g
e
 (

%
)

Source

Mobile

Cloudlet

Cloud

Fig. 9: Percentage of offloaded tasks to various destinations

particular task. The test-bed evaluation of SOBDO compares
the efficiency of different communication modes, i.e., 3G
mobile communication, WiFi, and WiFi Direct. Further, we
have evaluated the effects of the size and complexity of a
task on the offloading process. Our results have shown that
SOBDO efficiently maps the tasks to devices, cloudlets, or
cloud considering the load of the devices and cloudlets.

REFERENCES

[1] Z. Xia, Y. Zhu, X. Sun, Z. Qin, and K. Ren, “Towards privacy-preserving
content-based image retrieval in cloud computing,” IEEE Transactions
on Cloud Computing, vol. 6, no. 1, pp. 276–286, 2018.

[2] M. Armbrust, A. Fox, R. G. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, and I. Stoica, “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[3] R. Branch, H. Tjeerdsma, C. Wilson, R. Hurley, and S. McConnell,
“Cloud computing and big data: A review of current service models
and hardware perspectives,” Journal of Software Engineering and Ap-
plications, vol. 2014, 2014.

[4] P. Kuang, W. Guo, H. Li, W. Tian, and R. Buyya, “Analyzing energy-
efficiency of two scheduling policies in compute-intensive applications
on cloud,” IEEE Access, 2018.

[5] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Generation Computer Systems,
vol. 79, pp. 849–861, 2018.

[6] H. Qi and A. Gani, “Research on mobile cloud computing: Review,
trend and perspectives,” in Proc. of IEEE DICTAP, 2012, pp. 195–202.

[7] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile
cloud computing: taxonomy and open challenges,” Communications
Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 369–392, 2014.

[8] A. Jin, W. Song, and W. Zhuang, “Auction-based resource allocation
for sharing cloudlets in mobile cloud computing,” IEEE Transactions
on Emerging Topics in Computing, vol. 6, no. 1, pp. 45–57, 2018.

[9] J. Zheng, Y. Cai, Y. Wu, and X. S. Shen, “Dynamic computation
offloading for mobile cloud computing: A stochastic game-theoretic
approach,” IEEE Transactions on Mobile Computing, 2018.

[10] R. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis,
and G. Mastorakis, “Drop computing: Ad-hoc dynamic collaborative
computing,” Future Generation Computer Systems, 2017.

[11] M. Chen, Y. Hao, Y. Li, C. F. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: Architecture and service modes,” Com-
munications Magazine, vol. 53, no. 6, pp. 18–24, 2015.

[12] A. Kiani and N. Ansari, “Optimal code partitioning over time and
hierarchical cloudlets,” IEEE Communications Letters, vol. 22, no. 1,
pp. 181–184, 2018.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[14] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[15] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, p. 50, 2009.

[16] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing
resource-poor mobile devices with powerful clouds: architectures, chal-
lenges, and applications,” IEEE Wireless Comm., vol. 20, no. 3, 2013.

[17] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[18] D. Huang and H. Wu, Mobile Cloud Computing: Foundations and
Service Models. Morgan Kaufmann., 2017.

[19] G. Baranwal, D. Kumar, Z. Raza, and D. P. Vidyarthi, Auction Theory.
Singapore: Springer Singapore, 2018, pp. 17–31. [Online]. Available:
https://doi.org/10.1007/978-981-10-8737-0 2

[20] M. Diaz, C. Martin, and B. Rubio, “State-of-the-art, challenges, and open
issues in the integration of internet of things and cloud computing,”
Journal of Network and Computer applications, vol. 67, pp. 99–117,
2016.

[21] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in Proc. of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, 2013, pp. 69–84.

[22] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mobile Networks and Applica-
tions, vol. 16, no. 3, pp. 270–284, 2011.

[23] M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A review on dis-
tributed application processing frameworks in smart mobile devices for
mobile cloud computing,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 3, pp. 1294–1313, 2013.

[24] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems. ACM, 2011, pp. 301–314.

[25] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. H. Tuulos,
“Misco: a mapreduce framework for mobile systems,” in Proceedings
of the 3rd International Conference on Pervasive Technologies Related
to Assistive Environments. ACM, 2010, pp. 32–39.

[26] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services. ACM, 2010, pp. 49–62.

[27] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[28] D. P. Bertsekas, “Auction algorithms for network flow problems: A
tutorial introduction,” Computational Optimization and Applications,
vol. 1, no. 1, pp. 7–66, 1992.

[29] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, vol. 43, pp. 51–56, 2010.

https://doi.org/10.1007/978-981-10-8737-0_2

9

VIII. APPENDIX 1

TABLE IV: Specifications of the Devices in Testbed Experimentation

Sl. Category Device OS Processor RAM WiFi

1. Mobile Lenovo Vibe P1m Android OS, v5.1 Quad-core 1.0 GHz
Cortex-A53 2 GB Wi-Fi 802.11 b/g/n

2. Mobile Samsung Galaxy A5 Android OS,
v4.4.4

Quad-core 1.2 GHz
Cortex-A53 2 GB Wi-Fi 802.11 b/g/n

3. Mobile Samsung Galaxy
Golden Android OS, v4.2 Dual-core 1.7 GHz Krait

300 1.5 GB Wi-Fi 802.11 b/g/n

4. Cloudlet Dell Inspiron 15 Windows 10 Intel i5-2400s 2.50 GHz 6 GB Wi-Fi 802.11 b/g/n
5. Cloudlet Lenovo G40-80 Windows 8 Intel i3-5010U 2.1 GHz 4 GB Wi-Fi 802.11 b/g/n
6. Cloud “Meghamala” Ubuntu 14.04 Intel i7-4770 3.40 GHz 16 GB

	I Introduction
	II Related Work
	III Motivation and Objectives
	IV Problem Specification
	IV-A Architecture
	IV-B Problem Statement

	V Methodology
	V-A SOBDO-1 Solution
	V-A1 Bidding Phase
	V-A2 Allocation Phase

	V-B SOBDO-2 Solution
	V-B1 Bidding Phase
	V-B2 Allocation Phase

	VI Result and Discussion
	VI-A Simulation Experiments
	VI-A1 Experimental Set-up
	VI-A2 Benchmark Metrics
	VI-A3 Effects of the Size of the Offloaded Tasks
	VI-A4 Effects of Available Bandwidth
	VI-A5 Effects of Computational Power

	VI-B Testbed-based Experimentation
	VI-B1 Experimental Set-up
	VI-B2 Effect of Task-size
	VI-B3 Effect of Available Bandwidth for Offloading a Task
	VI-B4 Effect of Task Type to Energy Consumption
	VI-B5 Task Offloading

	VII Conclusion
	References
	VIII Appendix 1

